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The spectral function for an electron one-component plasma is calculated self-consistently using the GW�0�

approximation for the single-particle self-energy. In this way, correlation effects that go beyond the mean-field
description of the plasma are contained, i.e., the collisional damping of single-particle states, the dynamical
screening of the interaction, and the appearance of collective plasma modes. Second, a nonperturbative analytic
solution for the on-shell GW�0� self-energy as a function of momentum is presented. It reproduces the numeri-
cal data for the spectral function with a relative error of less than 10% in the regime where the Debye screening
parameter is smaller than the inverse Bohr radius, ��1aB

−1. In the limit of low density, the nonperturbative
self-energy behaves as n1/4, whereas a perturbation expansion leads to the unphysical result of a density-
independent self-energy �Fennel and Wilfer, Ann. Phys. �Leipzig� 32, 265 �1974��. The derived expression will
greatly facilitate the calculation of observables in correlated plasmas �transport properties, equation of state�
that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential,
which is computed from the analytical formulas and compared to the GW�0� result. At a plasma temperature of
100 eV and densities below 1021 cm−3, the two approaches deviate by less than 10% from each other.
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I. INTRODUCTION

The many-particle Green function approach �1� allows for
a systematic study of macroscopic properties of correlated
systems. Green functions have a long history of applications
in solid state theory �2�, nuclear �3�, and hadron physics �4�,
and also in the theory of strongly coupled plasmas �5�. In the
last case, optical and dielectric properties �6,7� have been
studied using the Green function approach, as well as trans-
port properties like conductivity �8� and stopping power
�9,10�, and the equation of state �11�. Modifications of these
quantities due to the interaction among the constituents can
be accessed, starting from a common starting point, namely,
the Hamiltonian of the system.

The key quantity for electronic properties in a correlated
many-body environment is the electron spectral function
A�p ,��, i.e., the probability density to find an electron at
energy �frequency� � for a given momentum p. It is related
to the retarded electron self-energy ��p ,�+ i�� ,��0, via
Dyson’s equation

A�p,�� =
− 2 Im ��p,� + i��

�� − �p − Re ��p,���2 + �Im ��p,� + i���2 .

�1�

Here, the single-particle energy

�p = p2 − 	e �2�

has been introduced, where 	e is the electron chemical po-
tential. Note that here and throughout the paper the Rydberg
system of units is used, where 
=1, me=1 /2, and e2 /4��0
=2. Furthermore, the Boltzmann constant kB is set equal to 1,
i.e., temperatures are measured in units of energy.

The self-energy describes the influence of correlations on
the behavior of the electrons. A finite, frequency-dependent
self-energy leads to a finite lifetime of single-particle states
and a modification of the single-particle dispersion relation.
Hence, the calculation of the electron self-energy is the cen-
tral task if one wants to determine electronic properties, e.g.,
those mentioned above.

The Hartree-Fock approximation �12� represents the low-
est order in a perturbative expansion of the self-energy in
terms of the interaction potential �13�. Because it is a mean-
field approximation, effects due to correlations in the system
cannot be described. Examples are the appearance of collec-
tive modes, the energy transfer during particle collisions, and
the quasiparticle damping. The next-order term is the Born
approximation, where binary collisions are taken into ac-
count via a bare Coulomb potential. However, the Born ap-
proximation leads to a divergent integral, due to the long-
range Coulomb interaction. Therefore, the perturbation
expansion of the self-energy has to be replaced by a nonper-
turbative approach, accounting for the dynamical screening
of the interparticle potential.

A nonperturbative approach to the many-particle problem
is given by the theory of Dyson �14� and Schwinger �15,16�
generalized to finite temperature and finite density �17�. An
excellent introduction to the Dyson-Schwinger equations can
also be found in �4�. The Dyson-Schwinger equation for the
self-energy � contains the full Green function G, the
screened interaction W, and the proper vertex 
. Since each
of these functions obeys a different Dyson-Schwinger equa-
tion itself, involving higher-order correlation functions, the
Dyson-Schwinger approach leads to a hierarchy of coupled
integro-differential equations. In order to provide soluble
equations, this hierarchy has to be closed at some level, i.e.,
correlation functions of a certain order have to be either pa-
rametrized or neglected.

One such closure of the Dyson-Schwinger hierarchy con-
sists in neglecting the vertex, i.e., the three-point function,
and considering only the particle propagators and their re-
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spective self-energies, i.e., two-point functions. One arrives
at the so-called GW approximation, introduced in solid-state
physics by Hedin �18�. Hedin was led by the idea of includ-
ing correlations in the self-energy by replacing the Coulomb
potential in the Hartree-Fock self-energy by the dynamically
screened interaction W. In this way, one obtains a self-
consistent, closed set of equations for the self-energy, the
polarization function �, the Green function, and the screened
interaction.

It can be shown �19� that the GW approximation is one of
the so-called �-derivable approximations �20,21�. As such, it
leads to energy-, momentum-, and particle-number-
conserving expressions for higher-order correlation func-
tions. It has been successfully applied in virtually all
branches of solid state physics. An overview of theoretical
foundations and applications of the GW approximation can
be found in the review articles �22–24�.

The drawback of the GW approximation is that the Ward-
Takahashi identities are violated. The Ward-Takahashi iden-
tities provide an exact relation between the vertex function

, i.e., the effective electron-photon coupling in the medium,
and the self-energy, and follow from the Dyson-Schwinger
equations. They reflect the gauge invariance of the theory. In
GW theory, they are violated simply because corrections to
the vertex beyond zero order are neglected altogether. This
issue touches on a fundamental problem in many-body
theory and field theory, namely, the question of how to pre-
serve gauge invariance in an effective, i.e., approximate,
theory, without violating basic conservation laws. A detailed
analysis of this question with application to nuclear physics
is presented in a series of papers by van Hees and Knoll
�25–27�.

Approximations for the self-energy that also contain the
vertex are often referred to as GW
 approximations. An ex-
ample can be found in Ref. �28�, where the spectral function
of electrons in aluminum is calculated using a parametrized
vertex function. An interesting result obtained in that work is
that vertex corrections and self-energy corrections entering
the polarization function largely cancel. This can be under-
stood as a consequence of the Ward-Takahashi identities.
Thus, and in order to reduce the numerical cost, it is a sen-
sible choice to neglect vertex corrections altogether, and to
keep the polarization function on the lowest level, i.e. the
random phase approximation �RPA�, which is the convolu-
tion product of two noninteracting Green functions in
frequency-momentum space. The corresponding self-energy
is named the GW�0� self-energy and has been introduced by
von Barth and Holm �29�, who were also the first to study the
fully self-consistent GW approximation �30�. Throughout
this work, the GW�0� self-energy will be analyzed.

Having been used in solid state physics traditionally, the
GW�0� method was recently also applied to study correlations
in hot and dense plasmas. The equation of state �31,32�, as
well as optical properties of electron-hole plasmas in highly
excited semiconductors �33� and dense hydrogen plasmas �7�
were investigated.

In general, the calculation of such macroscopic observ-
ables of many-particle system involves numerical operations
that need the spectral function as an input. Since the self-
consistent calculation of the self-energy, even in the GW�0�

approximation, is itself already a numerically demanding
task, it is worth looking for an analytic solution of the GW�0�

equations which reproduces the numerical solution at least in
a certain range of plasma parameters. Such an analytic ex-
pression then also allows study of the self-energy in various
limiting cases, such as the low-density limit or the limit of
high momenta, which are difficult to access in the numerical
treatment. Furthermore, an analytic expression that is already
close to the numerical solution permits the calculation of the
full GW�0� self-energy using only few iterations.

Analytical expressions for the single-particle self-energy
have already been given by other authors, e.g., Fennel and
Wilfer �34� and Kraeft et al. �12�. They calculated the self-
energy in first order of the perturbation expansion with re-
spect to the dynamically screened potential. Besides being
far from the converged GW�0� self-energy, their result is in-
dependent of density, i.e., the single-particle lifetime is finite
even in vacuum. As shown in �35�, this unphysical behavior
is a direct consequence of the perturbative treatment. By us-
ing a nonperturbative ansatz, an expression for the self-
consistent self-energy in a classical one-component plasma
was presented that reproduces the full GW�0� self-energy at
small momenta, i.e., for slow particles. The behavior of the
quasiparticle damping at larger momenta remained open and
will be investigated in the present work. Second, based on
the information gathered about the low- and high-momentum
behavior, an interpolation formula will be derived that gives
the quasiparticle damping at arbitrary momenta.

The work is organized in the following way. After a brief
outline of the GW�0� approximation in the next section, nu-
merical results will be given in Sec. III for the single-particle
spectral function for various sets of parameters, electron den-
sity n, and electron temperature T. In Sec. IV the analytic
expression for the quasiparticle damping width is presented
and comparison to the numerical results is given. Section V
deals with the application of the derived formulas to the
calculation of the chemical potential as a function of density
and temperature. An Appendix contains the detailed deriva-
tion of the analytic self-energy. As a model system, we focus
on the electron one-component plasma; ions are treated as a
homogeneously distributed background of positive charges
�jellium model�.

II. SPECTRAL FUNCTION AND SELF-ENERGY

We start our discussion with the integral equation for the
imaginary part of the single-particle self-energy in the GW�0�

approximation:

Im ��p,� + i�� =
1

nF����q
�

−�

� d��

2�
V�q�A�p − q,� − ���

�Im �RPA
−1 �q,���nB����nF�� − ��� . �3�

V�q�=8� /q2�0 is the Fourier transform of the Coulomb po-
tential with the normalization volume �0. It is multiplied by
the inverse dielectric function in the RPA,
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�RPA�q,�� = 1 − V�q��
p

nF��p−q/2� − nF��p+q/2�
� + �p−q/2 − �p+q/2

, �4�

to account for dynamical screening of the interaction. Fur-
thermore, the Fermi-Dirac and the Bose-Einstein distribution
functions, nF/B���= �exp�� /kBT��1�−1 were introduced.
Note that the dielectric function is determined only once, at
the beginning of the calculation. In particular, the single-
particle energies �p= p2−	e entering Eq. �4� are determined
from the noninteracting chemical potential, whereas during
the course of the self-consistent calculation of the self-
energy, the chemical potential is recalculated at each step via
inversion of the density relation

n�	e,T� = 2�
p
� d�

2�
A�p,��nF��� . �5�

Using the self-consistent chemical potential also in the RPA
polarization function leads to violation of the f-sum rule, i.e.,
conservation of the number of particles.

The real part of the self-energy is obtained via the
Kramers-Kronig relation �2�. All quantities �spectral func-
tion, self-energy, and chemical potential� have to be deter-
mined in a self-consistent way. This is usually achieved by
solving Eqs. �1�–�3� iteratively. The numerical algorithm is
discussed in detail in Ref. �35�.

III. NUMERICAL RESULTS

The spectral function was calculated for the case of a hot
one-component electron plasma. Temperature and density
were chosen such that the plasma degeneracy parameter

� =
T

EF
�6�

is always larger than 1, i.e., the plasma is nondegenerate.
Furthermore, the temperature is fixed above the ionization
energy of hydrogen, T�1 Ry, such that bound states can be
neglected in the calculations. At lower temperatures, bound
states have to be included, e.g., via the t matrix. For an
application in electron-hole plasmas, see Ref. �33�. The elec-
tron density is adjusted such that the plasma coupling param-
eter


 =
2

T
�4�n

3
�1/3

, �7�

which gives the mean Coulomb interaction energy compared
to the thermal energy, is smaller than 1 in all calculations,
i.e., we are in the limit of weak coupling.

In Fig. 1, we show contour plots of the spectral function
in frequency and momentum space for two different densities
n=7�1021 cm−3 �upper graph� and 7�1025 cm−3 �lower
graph�. The temperature is set to T=1000 eV in both calcu-
lations. The free particle dispersion �=�p is shown as a solid
black line.

In the first case, the plasma is classical ��=7.5�102� and
weakly coupled �
=4.4�10−3�. The spectral function is
symmetrically broadened and the maximum is found at the

free dispersion, i.e., there is no notable quasiparticle shift in
the present conditions. With increasing momentum, the
width of the spectral function decreases, and the maximum
value increases; the norm is preserved.

The situation changes when we go to higher densities �see
the lower graph in Fig. 1�. The chosen parameters are typical
solar core parameters �36�. The degeneracy parameter is now
�=1.6 and the coupling parameter is 
=0.096. The increased
degeneracy and coupling result in a significant modification
of the spectral function as compared to the low-density case:
A shift of the spectral function’s maximum to smaller fre-
quencies is observed, the Hartree-Fock shift. The shift due to
dynamic correlations is still small in the present conditions;
it becomes important in strongly degenerate systems �29�.
Furthermore, shoulders appearing in the wings of the main
quasiparticle peak at small momenta indicate the excitation
of new quasiparticles, so-called plasmarons �37�. They can
be seen more clearly in Fig. 7 �solid curve�. The plasmaron
satellites are separated from the main peak by roughly the
plasma frequency �pl=4	�n, which is about 23 Ry at the
present density. In the former case of lower density no plas-
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FIG. 1. �Color online� Contour plots of the spectral function as
a function of momentum and frequency. The color scale is logarith-
mic. Results are shown for two different densities n=7�1021 �up-
per graph� and 7�1025 cm−3 �lower graph�. For these parameters,
the plasma coupling parameter is 
=4.4�10−3 and 9.6�10−2, re-
spectively. The degeneracy parameter is �=7.5�102 and 1.6, re-
spectively. The black line indicates the free particle dispersion �
=�p.
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marons appear; only a featureless, single resonance is ob-
tained. At higher momenta, the plasmarons merge into the
central peak. As in the low-density case, the position of the
maximum approaches the single-particle dispersion, due to
the decreasing Hartree-Fock shift at high p. Again, the width
of the spectral function decreases with increasing momen-
tum.

This is visible more clearly in Figs. 2–7. Here, the solid
curves represent the GW�0� spectral function as a function of
frequency. Results are shown for three different momenta,
p=0aB

−1 �a�, 50aB
−1 �b�, and 100aB

−1 �c�. Two different tem-
peratures are considered, T=100 �Figs. 2–4� and 1000 eV
�Figs. 5–7�, and for each temperature three different densities
are studied. With increasing momentum p, the spectral func-
tion becomes more and more narrow, converging eventually
into a narrow on-shell resonance, located at the unperturbed
single-particle dispersion �+	e= p2.

As a general feature, one can observe an increase of the
spectral function’s width with increasing density and with
increasing temperature. The increase with density is due to
the increased coupling, while the increase with temperature
reflects the thermal broadening of the momentum distribu-
tion function nF��� that enters the self-energy and thereby
also the spectral function. From these results, we see that the
spectral function has a quite simple form in the limit of low
coupling, i.e., at low densities and high temperatures.

The numerical results are compared to a Gaussian ansatz
for the spectral function, shown as the dashed curve in Figs.
2–7. The explicit form of the Gaussian is given as Eq. �11�,

below. Its sole free parameter is the width, denoted by �p. An
analytic expression for �p will be derived in Sec. IV. The
coincidence is in general good at high momenta, whereas at
low momenta the spectral function deviates from the Gauss-
ian. In particular, the steep wings and the smoother plateau
that form at low momenta are not reproduced by the Gauss-
ian. Also, the plasmaron peaks appearing in the spectral
function at high density �see Fig. 7� cannot be described by
the single Gaussian.

Determination of �p via least-squares fitting of the Gauss-
ian ansatz to the numerical data at each p leads to the solid
curve in Fig. 8, obtained in the case of n=7�1020 cm−3 and
T=100 eV. Starting at some finite value �0 at p=0, the width
falls off slowly toward larger p. The dashed curve shows �p
as obtained from the analytic formula that will be derived in
the following section.

IV. ANALYTICAL EXPRESSION FOR THE
QUASI-PARTICLE SELF-ENERGY

The solution of the GW�0� equation �3� requires a consid-
erable numerical effort. So far �see, e.g. the work by Fennel
and Wilfer in �34��, attempts to solve the integral �3� analyti-
cally were led by the idea of replacing the spectral function
on the right-hand side �RHS� by its noninteracting counter-
part, A�0��p ,��=2����p−��, i.e., going back to the pertur-
bation expansion of the self-energy and neglecting the im-
plied self-consistency. At the same time, the inverse
dielectric function is usually replaced by a simplified expres-
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FIG. 2. Spectral function in GW�0�-approximation �solid lines� and Gaussian ansatz �dashed lines� with quasiparticle damping width �p

taken from Eq. �17� for three different momenta p= �a� 0, �b� 50aB
−1, and �c� 100aB

−1. Plasma parameters: n=7�1019 cm−3, T=100 eV. The
plasma coupling parameter is 
=1.0�10−2, the degeneracy parameter is �=1.6�103, and the Debye screening parameter is �=6.0
�10−3aB
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FIG. 3. Spectral function in GW�0� approximation �solid lines� and Gaussian ansatz �dashed lines� with quasiparticle damping width �p

taken from Eq. �17� for three different momenta p= �a� 0, �b� 50aB
−1, and �c� 100aB

−1. Plasma parameters: n=7�1020 cm−3, T=100 eV. The
plasma coupling parameter is 
=2.1�10−2, the degeneracy parameter is �=3.5�102, and the Debye screening parameter is �=1.9
�10−2aB
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sion, e.g., the Born approximation or the plasmon-pole ap-
proximation �12�. Whereas the second simplification is indis-
pensable due to the complicated structure of the inverse
dielectric function, the first one, i.e., the recursion to the
quasiparticle picture, is not necessary, as was shown by the
author in Ref. �35�. In fact, the result that one obtains in the
quasiparticle approximation is far from the converged result,
at least in the high-temperature case. Second, if the quasipar-
ticle approximation is used, the imaginary part of the self-
energy is not density dependent, i.e., a finite lifetime of the
particle states is obtained even in vacuum. This unphysical
result can be overcome only if one sticks to the self-
consistency of the self-energy, i.e., if one leaves the imagi-
nary part of the self-energy entering the RHS of Eq. �3�
finite.

Using the statically screened Born approximation, which
describes the binary collisions among electrons via a stati-
cally screened potential, a scaling law Im �(p ,�QP�p�)
�
3/4 was found �35�. Hence, the spectral function width
vanishes when the plasma coupling parameter 
 �see Eq. �7��
tends to 0. An expression for the self-energy was found that
reproduces the converged GW�0� calculations at small mo-
menta, p��. At higher momenta, the derived expression
ceases to be valid.

In this work, a different approximation to the dielectric
function is studied, namely, the plasmon-pole approximation
�12�. This means that the inverse dielectric function is re-
placed by a sum of two � functions that describe the location
of the plasmon resonances,

Im �RPA
−1 �q,��� → Im �PPA

−1 �q,���

= −
�

2

�pl
2

�q
���� − �q� + ��� + �q�� . �8�

For classical plasmas, the plasmon dispersion �q can be ap-
proximated by the Bohm-Gross dispersion relation �38�

�q
2 = �pl

2 �1 +
q2

�2� + q4. �9�

Many-particle and quantum effects on the plasmon disper-
sion have recently been studied in �39�.

The plasmon-pole approximation �PPA� allows one to
perform the frequency integration in Eq. �3�, resulting in the
expression

Im ��p,� + i�� =
�pl

2

4 �
q

V�q�
1

�q
�A�p − q,� − �q�

�nB��q�exp��q/T� − A�p − q,� + �q�

�nB�− �q�exp�− �q/T�� . �10�

We will first study the case of high momenta, i.e., momenta
that are large against any other momentum scale or inverse
length scale, such as the mean momentum with respect to the
Boltzmann distribution, p̄=	3T /2, or the inverse screening
length �=	8�n /T.

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

sp
ec

tr
al

fu
nc

tio
n

A
(p

,ω
)

[1
/R

y]

frequency ω+µe [Ry]

p=0 aB
-1

GW(0)

Gauss fit

0

2

4

6

8

10

2497 2498 2499 2500 2501 2502 2503

sp
ec

tr
al

fu
nc

tio
n

A
(p

,ω
)

[1
/R

y]

frequency ω+µe [Ry]

p=50 aB
-1

GW(0)

Gauss fit

0

2

4

6

8

10

9997 9998 9999 10000 10001 10002 10003

sp
ec

tr
al

fu
nc

tio
n

A
(p

,ω
)

[1
/R

y]

frequency ω+µe [Ry]

p=100 aB
-1

GW(0)

Gauss fit

(a) (b) (c)

FIG. 4. Spectral function in GW�0� approximation �solid lines� and Gaussian ansatz �dashed lines� with quasiparticle damping width �p

taken from Eq. �17� for three different momenta p= �a� 0, �b� 50aB
−1, and �c� 100aB

−1. Plasma parameters: n=7�1021 cm−3, T=100 eV. The
plasma coupling parameter is 
=4.4�10−2, the degeneracy parameter is �=7.5�101, and the Debye screening parameter is �=6.0
�10−2aB
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FIG. 5. Spectral function in GW�0� approximation �solid lines� and Gaussian ansatz �dashed lines� with quasiparticle damping width �p

taken from Eq. �17� for three different momenta p= �a� 0, �b� 50aB
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−1. Plasma parameters: n=7�1021 cm−3, T=1000 eV. The
plasma coupling parameter is 
=4.4�10−3, the degeneracy parameter is �=7.5�102, and the Debye screening parameter is �=1.9
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As discussed in the previous section, the numerical results
for the spectral function at high momenta can well be repro-
duced by a Gaussian. Thus, we make the following ansatz for
the spectral function:

AGauss�p,�� = −
	2�

�p
exp�−

�� − �p − �HF�p��2

2�p
2 � . �11�

Note that only the Hartree-Fock contribution to the real part
of the self-energy appears. The frequency-dependent part is
usually small near the quasiparticle dispersion,

�QP�p� = �p + Re ��p,��

�=�QP�p�, �12�

which therefore can be approximated as �QP�p�=�p
+Re �HF�p�. In the following, we make use of the knowl-
edge about the width parameter �p that we gathered already
through simple least-squares fitting of the Gaussian ansatz to
the spectral function in order to solve the integrals in Eq.
�10�.

First, we replace the spectral function on the RHS by the
Gaussian ansatz �11� and evaluate the emerging equation at
the single-particle dispersion �QP�p�. By claiming that the
Gaussian and the spectral function have the same value at the
quasiparticle energy, we identify �p=	� /2Im �(p ,�QP�p�).
Figure 8 shows that the quasiparticle damping �p is a smooth
function of p that varies only little on the scale of the screen-
ing parameter �. Since the latter defines the scale on which
contributions to the q integral are most important, we can
neglect the momentum shift in the self-energy on the RHS,
i.e., we can replace the spectral function on the RHS of Eq.
�10� by

A�p − q,�p + �HF�p� � �q�

→ −
	2�

�p
exp�−

��p � �q − �p−q�2

2�p
2 � , �13�

and can now perform the integral over the angle � between
the momenta p and q,

	2�

�p
�

−1

1

d cos �

�exp�−
��p � �q − p2 − q2 + 2pq cos � + 	e�2

2�p
2 �

=
�

2pq�Erf� �p + q�2 − p2 � �q

	2�p
�

− Erf� �p − q�2 − p2 � �q

	2�p
�� . �14�

The remaining integration over the modulus of the trans-
fer momentum q can be performed after some further ap-
proximations, explained in detail in Appendix A. For large p,
one finally obtains the transcendental equation

�p = − 1.3357	�

2

�pl

2p
�nB��pl�exp��pl/T�

− nB�− �pl�exp�− �pl/T�� −	�

2

T

2p
ln��2p2/�p

2� .

�15�

The solution of this equation can be expanded for large ar-
guments of the logarithm, yielding

�p = −	�

2

T

p
��p� ,

��p� = ���p� − ln ��p� +
ln ��p�

��p�
−

ln ��p�
�2�p�

+
ln ��p�

��p�
−

3 ln2 ��p�
2�3�p�

+
ln2 ��p�
2�2�p�

+
ln3 ��p�
3�3�p� �

+ O�p�−3,

��p� = ln�	 2

�
�p2 exp�A/T�/T� , �16�

A = − 1.3357
�pl

2
�nB��pl�exp��pl/T�

− nB�− �pl�exp�− �pl/T�� .

Equation �16� is a solution of Eq. �15� provided the argument
of the inner logarithm is larger than Euler’s constant e, i.e.,
	2 /��p2 exp�A /T� /T�e, i.e., at large p. The case of small
p, where the previous inequality does not hold, has to be
treated separately; see Appendix B.

Together with an expression for the quasiparticle damping
at vanishing momentum taken from �35� and scaled such that
the maximum of the spectral function at p=0 is reproduced,
�0=−�	�T /2, an interpolation formula �Padé formula� was
derived that covers the complete p range:

�p
Padé =

a0 + a1p

1 + b1p + b2p2 �̃�p� ,

�̃�p� = ��̃�p� − ln �̃�p� +
ln �̃�p�

�̃�p�
−

ln �̃�p�

�̃2�p�
+

ln �̃�p�

�̃�p�

−
3 ln2�̃�p�

2�̃3�p�
+

ln2�̃�p�

2�̃2�p�
+

ln3�̃�p�

3�̃3�p�
� ,

�̃�p� = ln�e +	 2

�
�p2 exp�A/T�/T� ,

a0 = −
�

2
	�T, a1 = − ���

2
�3/2

, b1 =	��

2T
, b2 =

��

2T
.

�17�

The function �̃�p� in the last equation differs from ��p� in Eq.
�16� in that Euler’s constant e
2.7183 has been added to the
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argument of the logarithm. In this way, the function �̃�p� is
regularized at small p and tends to 1 at p=0, i.e., the quasi-
particle damping goes to the correct low-p limit. At large p,
this modification is insignificant, since the original argument
rises as p2. For the detailed derivation, see Appendix B.

Expression �17�, used in the Gaussian ansatz �11�, leads to
a spectral function that well reproduces the numerical data
from full GW�0� calculations: Figure 8 �dashed curve� shows
the effective quasiparticle damping width �p as a function of
momentum p for the case n=7�1020 cm−3 and T=100 eV.
The solid curve gives the best-fit value for �p obtained via
least-squares fitting of the full GW�0� calculations assuming
the Gaussian form �11� �see Sec. III�. The two curves coin-
cide to a large extent. The largest deviations are observed in
the range of p
20aB

−1. At this point, the validity of expres-
sion �16� as the solution of Eq. �15� ceases, since the argu-
ment of the logarithm becomes smaller than e. As already
mentioned, we circumvented this problem by regularizing
the logarithm, adding e to its argument. The deviation at p

20aB

−1 of up to 15% is a residue of this procedure. At
higher momenta, the deviation is generally smaller than 10%
and the analytic formula evolves parallel to the fit param-
eters.

At smaller densities, the correspondence is even better as
can be seen by comparing the spectral functions shown in
Figs. 2–7. The dashed curves give the Gaussian ansatz for
the spectral function with the quasiparticle width taken from
the interpolation formula �17�. As a general result, the ana-

lytic expression for the quasiparticle damping �p leads to a
spectral function that nicely fits the numerical solution for
the spectral function at least at finite p. At very small values
of p, the overall correspondence is still fair, i.e., the position
of the maximum and the overall width match, but the de-
tailed behavior does not coincide. In particular, the steep
wings and the central plateau that form in the GW�0� calcu-
lation are not reproduced by the one-parameter Gaussian. For
this situation, the analytic formula for self-energy given in
�35� should be used instead.

By comparing the numerical data for the spectral function
to the Gaussian ansatz at different densities, it is found that
the Gaussian spectral function is a good approximation as
long as the Debye screening parameter � is smaller than the
inverse Bohr radius, ��1aB

−1. This becomes obvious by
comparing Figs. 6 and 7. In the first case �n=7�1023 cm−3,
T=1000 eV�, we have �=0.19, while in the second case
�n=7�1025 cm−3, T=1000 eV�, �=1.9 is found. As already
noted in the discussion of the numerical results in Sec. III, in
the case of increased density, the plasmaron satellites appear
as separate structures in the wings of the central quasiparticle
peak, whereas they are hidden in the central peak at smaller
densities. Therefore, a single Gaussian is not sufficient to fit
the spectral function at increased densities. Since the position
of the plasmaron peak is given approximately by the plasma
frequency �pl, whereas the width of the central peak at small
p is just the quasiparticle width �0, we can identify the ratio
of these two quantities, −�pl /�0�	�, as the parameter that
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FIG. 6. Spectral function in GW�0� approximation �solid lines� and Gaussian ansatz �dashed lines� with quasiparticle damping width �p

taken from Eq. �17� for three different momenta p= �a� 0, �b� 50aB
−1, and �c� 100aB

−1. Plasma parameters: n=7�1023 cm−3, T=1000 eV. The
plasma coupling parameter is 
=2.1�10−2, the degeneracy parameter is �=3.5�101, and the Debye screening parameter is �=1.9
�10−1aB
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Gaussian fit is no longer sufficient due to the appearance of plasmaron resonances in the spectral function �shoulders at �
−30 and

20 Ry�.
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tells us if plasmaron peaks appear separately ��pl�−�0� or
not ��pl�−�0�. Since the plasma frequency increases as a
function of n1/2, whereas the quasiparticle width scales as
n1/4 �see Eq. �17��, the transition from the single-peak behav-
ior to the more complex behavior including plasmaron reso-
nances appears at increased density. Neglecting numerical
constants of order 1 in the ratio of plasma frequency to
damping width, we see that −�pl /�0�1 is equivalent to �
�1, which was our observation from the numerical results.
Therefore, we can identify the range of validity of the pre-
sented expressions for the spectral function and the quasipar-
ticle damping. It is valid for those plasmas where we have
densities and temperatures such that ��1.

The physical origin of the requirement ��1 can be un-
derstood in the following way �35�. At length scales smaller
than the Bohr radius, one typically expects quantum effects,
e.g., Pauli blocking. These effects are not accounted for in
the derivation of the quasiparticle damping. Therefore, it ap-
pears to be a logical consequence that the validity of the
results is limited by the length scale at which typical quan-
tum phenomena become important.

The regime of validity of the analytic formula can also be
expressed via the plasma coupling parameter and the tem-
perature as 
�T−2/3. Since we restrict ourselves to plasma
temperatures where bound states can be excluded, i.e., T
�1 Ry, this is equivalent to saying that 
�1.

Although the correspondence between the accurate GW�0�

calculations and the parametrized spectral function at small
momenta is not as good as in the case of large momenta, the
parametrized spectral function can be applied in the regime
of validity to the calculation of plasma observables without
introducing too large errors. As an example, this will be
shown for the case of the chemical potential 	 in the next
section.

V. APPLICATION: SHIFT OF THE CHEMICAL
POTENTIAL

To demonstrate the applicability of the presented formulas
for quick and reliable calculations of plasma properties, we

calculate the shift of the electron’s chemical potential �	
=	−	free, i.e., the deviation of the chemical potential of the
interacting plasma 	 from the value of the noninteracting
system 	free. The chemical potential of the interacting system
	 is obtained by inversion of the density as a function of T
and 	, Eq. �5�. The free chemical potential 	free is obtained
in a similar way by inversion of the free density,

nfree�T,	free� = 2�
p

nF��p − 	free� . �18�

Figure 9 shows the shift of the chemical potential as a
function of the plasma density n for a fixed plasma tempera-
ture T=100 eV. Results obtained by inversion of Eq. �5� us-
ing the parametrized spectral function �11� with the quasipar-
ticle damping width taken from Eq. �17� �solid curve� are
compared to those results taking the numerical GW�0� spec-
tral function �dashed curve�.

The GW�0� result gives slightly smaller shifts than the pa-
rametrized spectral function, i.e., the usage of the analytical
damping width leads to an overestimation of the shift of the
chemical potential. However, the deviation remains smaller
than 20% over the range of densities considered here, i.e., for
��1. At small densities, i.e., for n�1020 cm−3, the param-
etrized spectral function yields the same result as the full
GW�0� calculation.

The deviation at increased density can be reduced by im-
proving the parametrization of the spectral function at small
momenta. To this end, the behavior of the quasiparticle
damping width at high momenta, Eq. �16� should be com-
bined with the frequency-dependent solution for �p at van-
ishing momentum, as presented in Ref. �35�. However, this
task goes beyond the scope of this paper, where we wish to
present comparatively simple analytic expressions for the
damping width that yield the correct low-density behavior of
plasma properties.

VI. CONCLUSIONS AND OUTLOOK

In this paper, the GW�0� approximation for the single-
particle self-energy was evaluated for the case of a classical
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one-component electron plasma, with ions treated as a ho-
mogeneous charge background. A systematic behavior of the
spectral function was found, i.e., a symmetrically broadened
structure at low momenta and convergence to a sharp quasi-
particle resonance at high p. At increased densities, plasma-
ron satellites show up in the spectral function as satellites
besides the main peak.

In the second part, an analytic formula for the imaginary
part of the self-energy at the quasiparticle dispersion
�QP�p�=�p+�HF�p� was derived as a two-point Padé for-
mula that interpolates between the exactly known behavior at
p=0 and p→�. The former case was studied in �35�, while
an expression for the asymptotic case p→� was derived
here. The result is summarized in Eq. �17�. In contrast to
previously known expressions for the quasiparticle damping,
based on a perturbative approach to the self-energy �34�, the
result presented here shows a physically intuitive behavior in
the limit of low densities, i.e., it vanishes when the system
becomes dilute. Use of the Gaussian ansatz �11� for the spec-
tral function in combination with the quasiparticle width
leads to a very good agreement with the numerical data for
the spectral function in the range of plasma parameters
where ��1aB

−1; the relative deviation is smaller than 10%
under this constraint.

Thus, a simple expression for the damping width of elec-
trons in a classical plasma has been found, which can be used
to approximate the full spectral function to high accuracy.
This achievement greatly facilitates the calculation of ob-
servables that take the spectral function or the self-energy as
an input, such as optical properties �inverse bremsstrahlung
absorption�, conductivity, or the stopping power.

Furthermore, it was demonstrated that the derived expres-
sions allow for quick and reliable calculations of plasma
properties without having to resort to the full self-consistent
solution of the GW�0� approximation. As an example, the
shift of the chemical potential was calculated using the pa-
rametrized spectral function, and compared to GW�0� results.
For densities of n�1021 cm−3, the two approaches coincide
with a relative deviation of less than 10%, going eventually
up to 20% as the density approaches 1022 cm−3. At low den-
sities both approaches give identical results. This shows the
extreme usefulness of the presented approach for the calcu-
lation of observables via the parametrized spectral function.

As a further important application of the results presented
in this paper, we would like to mention the calculation of
radiative energy loss of particles traversing a dense medium,
i.e., bremsstrahlung. A many-body theoretical approach to
this scenario is given by Knoll and Voskresensky �40�, using
nonequilibrium Green functions. They showed that a finite
spectral width of the emitting particles leads to a decrease in
the bremsstrahlung emission. This effect is known as the
Landau-Pomeranchuk-Migdal effect �41,42�. It has been ex-
perimentally confirmed in relativistic electron scattering ex-
periments using dense targets, e.g., lead �43,44�. In �45�, it is
shown that thermal bremsstrahlung from a plasma is also
reduced due to the finite spectral width of the electrons in the
plasma. In the cited papers, the quasiparticle damping width
was either set as a momentum- and energy-independent pa-
rameter �in �40��, or calculated self-consistently using sim-
plified approximations of the GW�0� theory �in �45��, which

itself is a very time-consuming task and prohibited investi-
gations over a broad range of plasmas parameters. Now,
based on this work’s results, calculations on the level of the
full GW�0� approximation become feasible, since analytic for-
mulas have been found that reproduce the GW�0� self-energy.
Effects of dynamical correlations on the bremsstrahlung
spectrum can be studied starting from a consistent single-
particle description via the GW�0� self-energy.
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APPENDIX A: ANALYTIC SOLUTION FOR THE GW(0)

SELF-ENERGY USING THE PLASMON-POLE
APPROXIMATION

After the angular integration which was performed in Eq.
�14�, the imaginary part of the self-energy at the quasiparticle
dispersion �=�p reads

Im ��p,p2� =
�pl

2

4p
�

0

� dq

q�q
��Erf�q2 + 2pq + �q

	2�p
�

− Erf�q2 − 2pq + �q

	2�p
��nB��q�exp��q/T�

− �Erf�q2 + 2pq − �q

	2�p
�

− Erf�q2 − 2pq − �q

	2�p
��nB�− �q�exp�− �q/T�� .

�A1�

This equation represents a self-consistent equation for
Im ��p ,�= p2�=	2 /��p.

Our aim is to derive an analytic expression that approxi-
mates the numerical solution of Eq. �A1� for arbitrary p. To
this end, we first look at the case of large momenta, p��,
and later combine that result with known expressions for the
limit of vanishing momentum p→0, to produce an interpo-
lation �“Padé”� formula that covers the complete p range.

We perform a sequence of approximations to the integral
in �A1�. First, we observe, that at large p, the term 2pq
dominates in the argument of the error function. We rewrite
Eq. �A1� as

�p =	�

2
Im ��p,p2� =	�

2

�pl
2

4p
�

0

� dq

q�q
��Erf� 2pq

	2�p
�

− Erf�− 2pq
	2�p

��nB��q�exp��q/T� − �Erf� 2pq
	2�p

�
− Erf�− 2pq

	2�p
��nB�− �q�exp�− �q/T�� �A2�
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=	�

2

�pl
2

4p
�

0

� dq

q�q
2 Erf� 2pq

	2�p
��nB��q�exp��q/T�

− nB�− �q�exp�− �q/T�� . �A3�

The integrand in Eq. �A3� contains a steeply rising part at
q�−�p / p and a smoothly decaying part for at large q, i.e.,
when q�−�p / p. Therefore, we separate the integral in the
equation into two parts, one going from q=0 to q= q̄=
−�p / p and the other from q̄ to infinity. In the first part of the
integral, the values for q are so small that we can replace the
plasmon dispersion by the plasma frequency �pl. In the sec-
ond term, the argument of the error function is large and the
error function can be replaced by its asymptotic value at
infinity, limx→� Erf�x�=1. This leads to

�p =	�

2

�pl
2

4p ��0

q̄ dq

q�pl
2 Erf� 2pq

	2�p
��nB��pl�exp��pl/T�

− nB�− �pl�exp�− �pl/T�� + 2�
q̄

� dq

q�q
�nB��q�exp��q/T�

− nB�− �q�exp�− �q/T��� . �A4�

Finally, we expand the last term in powers of �q /T, which is
justified at low densities ��q��pl�, and keep only the first
order,

nB��q�exp��q/T� − nB�− �q�exp�− �q/T� =
2T

�q
+ O��q�−3.

�A5�

We obtain

�p =	�

2

�pl
2

4p ��0

q̄ dq

q�pl
2 Erf� 2pq

	2�p
��nB��pl�exp��pl/T�

− nB�− �pl�exp�− �pl/T�� + 4T�
q̄

� dq

q�q
2� . �A6�

Both integrals can be performed analytically:

�
0

q̄ dq

q
Erf� 2pq

	2�p
� = − 2	 2

�

pq̄

�p
2F2�1/2,1/2;3/2,3/2;

− 2p2q̄2/�p
2�

= − 2	 2

� 2F2�1/2,1/2;3/2,3/2;− 2�

= − 1.3357,

�
q̄

� dq

q�pl
2 �1 + q2/�2�

=
1

2
ln�1 + �2/q̄2� =

1

2
ln�1 + �2p2/�p

2� ,

�A7�

where q̄=−�p / p was used. Note that, in the second integral,
the q4 term in the plasmon dispersion �9� is omitted.

2F2�a1 ,a2 ;b1 ,b2 ;z� is the generalized hypergeometric func-
tion �46�.

We arrive at the equation

�p = − 1.3357	�

2

�pl
2

2p
�nB��pl�exp��pl/T� − nB�− �pl�

�exp�− �pl/T�� −	�

2

T

2p
ln�1 + �2p2/�p

2� . �A8�

At large p, the term �2p2 /�p dominates the argument of the
logarithm, i.e., we can write ln�1+�2p2 /�p

2�
 ln��2p2 /�p
2�.

Then, we arrive at Eq. �A1�, given in Sec. IV.

APPENDIX B: PADÉ APPROXIMATION

From the knowledge of the behavior of �p in the limits
p→0 and p→�, a two-point Padé interpolation formula can
be constructed. For the value of the quasiparticle damping
width at p=0 we take the expression

�0 = −
�

2
	�T , �B1�

which is the exact solution of the self-consistent Born ap-
proximation �35�.

The Padé interpolation formula is constructed in the fol-
lowing way. We make the ansatz

�p
Padé =

a0 + a1p

1 + b1p + b2p2 �̃�p� , �B2�

where the function �̃�p� contains the logarithmic terms
present in the behavior of �p at large p �cf. Eq. �16��:

�̃�p� = ��̃ − ln �̃ +
ln �̃

�̃
−

ln �̃

�̃2
+

ln �̃

�̃

−
3 ln2 �̃

2�̃3
+

ln2 �̃

2�̃2
+

ln3 �̃

3�̃3
� , �B3�

�̃ = ln�e +	 2

�
�p2 exp�A/T�/T� . �B4�

The coefficients a0 ,a1 ,b1 ,b2 are determined by power ex-
pansion at p=0 and p→�,

lim
p→0

�p
Padé = a0 + �a1 − a0b1�p + O�p2� , �B5�

lim
p→�

�p
Padé = � a1

b2p
+

a0b2 − a1b1

b2
2p2 + O�p−3���̃�p� , �B6�

and comparison to the behavior of �p in these limiting cases,
e.g., Eq. �16� for large p and Eq. �B1� for p→0. Setting the
slope of �p at p=0 to zero, as well as the coefficient in front
of the p−2 term of the asymptotic expansion, we arrive at the
following equations for the coefficients of the interpolation
formula:

a0 = −
�

2
	�T, a1 − a0bq = 0, �B7�
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a1 = − T	�

2
b2, a0b2 − a1b1 = 0. �B8�

The solution reads

a0 = −
�

2
	�T, a1 = − ���

2
�3/2

, �B9�

b1 =	��

2T
, b2 =

��

2T
, �B10�

which is given as Eq. �17� in the main text, Sec. II.
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